If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2-33y=0
a = 3; b = -33; c = 0;
Δ = b2-4ac
Δ = -332-4·3·0
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-33)-33}{2*3}=\frac{0}{6} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-33)+33}{2*3}=\frac{66}{6} =11 $
| -30m-11=67 | | p2-10p=-21 | | -4m-13=81 | | 7-7x-3=-44+5x-12 | | 16-4x=-12x | | X-2/3x-4=1 | | -14=x/4-7 | | 1/8x+2=-3 | | 33=15-2x | | 0.4x^2+2x+2=45 | | A=x(100-2x) | | y/0.34=7.5 | | A=1/4s^2 | | 24x+12=6x-18 | | 9-2n=1-4n | | 900=15x^2 | | -8p=20(4/5p+3-3/4p | | 10x-38=62+5x | | 1/x^2+((x+3)/(2x))=1/2 | | 80-x=4 | | 4^4x-5=36 | | 1y+6=12 | | 2b^2+24b+144=0 | | 0.6(x-6)=4.2 | | X-3/x=99.5 | | 10=4.9+f | | 2.1b=-18.9 | | k/5=3.7 | | 32=-4^x | | 21=-4.2h | | -9.3+x/7=-20.7 | | 45+x+8x+21=180 |